Negative Differential Resistance in Graphene Boron Nitride Heterostructure Controlled by Twist and Phonon-Scattering

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures.

Recent developments in the technology of van der Waals heterostructures made from two-dimensional atomic crystals have already led to the observation of new physical phenomena, such as the metal-insulator transition and Coulomb drag, and to the realization of functional devices, such as tunnel diodes, tunnel transistors and photovoltaic sensors. An unprecedented degree of control of the electro...

متن کامل

Negative Differential Resistance in Boron Nitride Graphene Heterostructures: Physical Mechanisms and Size Scaling Analysis

Hexagonal boron nitride (hBN) is drawing increasing attention as an insulator and substrate material to develop next generation graphene-based electronic devices. In this paper, we investigate the quantum transport in heterostructures consisting of a few atomic layers thick hBN film sandwiched between graphene nanoribbon electrodes. We show a gate-controllable vertical transistor exhibiting str...

متن کامل

Graphene-Hexagonal Boron Nitride Heterostructure as a Tunable Phonon–Plasmon Coupling System

The layered van der Waals (vdW) heterostructure, assembled from monolayer graphene, hexagonal boron nitride (h-BN) and other atomic crystals in various combinations, is emerging as a new paradigm with which to attain desired electronic and optical properties. In this paper, we study theoretically the mid-infrared optical properties of the vdW heterostructure based on the graphene–h-BN system. T...

متن کامل

Vertical transport in graphene-hexagonal boron nitride heterostructure devices

Research in graphene-based electronics is recently focusing on devices based on vertical heterostructures of two-dimensional materials. Here we use density functional theory and multiscale simulations to investigate the tunneling properties of single- and double-barrier structures with graphene and few-layer hexagonal boron nitride (h-BN) or hexagonal boron carbon nitride (h-BC2N). We find that...

متن کامل

All-angle negative refraction of highly squeezed plasmon and phonon polaritons in graphene-boron nitride heterostructures.

A fundamental building block for nanophotonics is the ability to achieve negative refraction of polaritons, because this could enable the demonstration of many unique nanoscale applications such as deep-subwavelength imaging, superlens, and novel guiding. However, to achieve negative refraction of highly squeezed polaritons, such as plasmon polaritons in graphene and phonon polaritons in boron ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Electron Device Letters

سال: 2016

ISSN: 0741-3106,1558-0563

DOI: 10.1109/led.2016.2595522